Synthesis of NiFe₂O₄ Powders Well Defined in Size and Morphologies

Yu Ting ZHAO^{*}, De Hong CHEN, Dai Rong CHEN, Xiu Ling JIAO Department of Chemistry, Shandong University, Jinan 250100

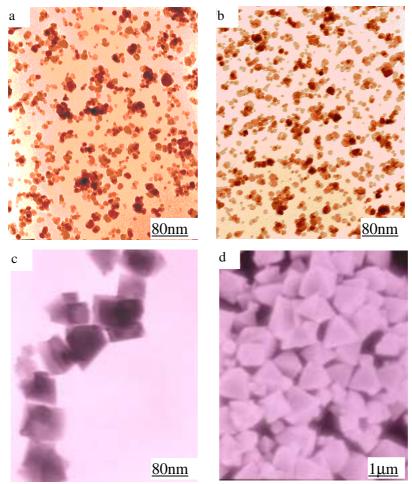
Abstract: The uniform NiFe₂O₄ powders with different particle size and morphologies (octahedral, cubic and spherical) have been prepared from different precursors *via* hydrothermal process. The nanocrystallines derived from precursor B in the weak alkali solution (pH \leq 10) are superparamagnetic.

Keywords: Nickel ferrite, hydrothermal method, superparamagnetism.

In recent years, the superparamagnetic nanocrystallites have attracted more attention for their various applications including ferrofluid technology, magnetically guided site-specific drug delivery, microwave devices, contrast enhancement of magnetic resonance imaging (MRI) and *etc*¹. Although NiFe₂O₄ powders have been successfully synthesized by other methods before^{2,3}, but the synthetic methods for preparing high crystallized and uniform NiFe₂O₄ particles with a narrow size distribution are still lacking. In this work, we successfully prepare the high quality superparamagnetic NiFe₂O₄ particles well defined in size and morphology through the hydrothermal process.

Experimental

Using α -FeOOH powders and amorphous Ni(OH)₂ (precursor A) or the mixed metal hydroxides of Fe³⁺ and Ni²⁺ (precursor B) as starting materials, the above precursor A or B was dispersed in a NaOH solution and stirred for 30 min. Then the as-prepared suspension was poured into a teflon-lined autoclave and hydrothermally heated at a designed temperature for a planned period. After that the autoclave was cooled to room temperature, the product was collected and then dried at ambient temperature before being characterized.

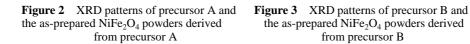

Results and Discussion

The SEM and TEM photographs of the NiFe₂O₄ particles derived from precursor A and B respectively are shown in **Figure 1**. After hydrothermal treatment in alkali medium, precursor A transforms into uniform octahedral microcrystals (*ca.* ~1.23 μ m), and

^{*} E-mail: ytzhao@sdu.edu.cn

precursor B precipitated in the form of spherical (9~18 nm) or cubic (82~96 nm) nanoparticles, which dependes on the alkali concentration.

Figure 1 The SEM and TEM photographs of the NiFe₂O₄ particles obtained at 200 $^{\circ}$ C


*alkali concentration: a- pH=7, b- pH=10, c- pH=13 from precursor B and d- 4.0 mol/L from precursor A.

The XRD patterns of precursor A and its crystallization behavior while the reaction was held at 200°C for 6 h are shown in **Figure 2**. It is found that the crystallization of NiFe₂O₄ was greatly accelerated with the increasing of the alkali concentration. For precursor B, NiFe₂O₄ can be obtained even in the neutral medium. Increasing pH value of the medium, the large particles will form, which are demonstrated by the narrowing phenomenon of the corresponding X-ray diffraction peaks (see **Figure 3**).

The magnetic characterization of the as-prepared NiFe₂O₄ powders manifestes that the spherical nanoparticles derived from precursor B in weak alkali solution (pH \leq 10) are

Synthesis of NiFe2O4 Powders Well Defined in Size and Morphologies 391

superparamagnetic and the results are fitted with the Langevin equation. These results confirm that the as-prepared NiFe₂O₄ powders possess the superparamagnetic properties⁴. Compared with the NiFe₂O₄ powders synthesized by other methods^{3,5}, the resulting powders have higher saturation magnetization moment (M_s) values (see **Table 1**), which might be due to their high crystallization and uniform morphologies. All these properties are interesting for their further applications.

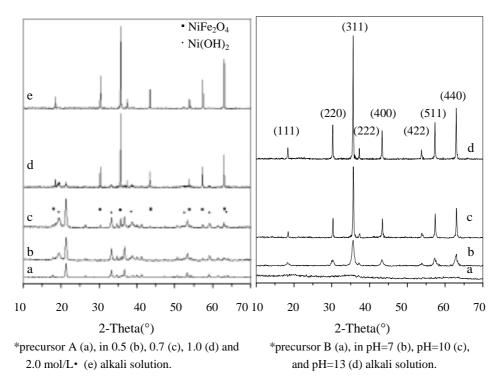


Table 1 The magnetic parameters of as-prepared NiFe₂O₄ powders with different particle size

Sample	Particle size (nm)		M _s value	Corcivity
	XRD*	TEM	$(emu g^{-1})$	(KAm^{-1})
а	14.2	9~18	48.07	
b	14.6	10~20	48.72	
с	89.2	82~96	54.02	54.1
d		1.23µm	54.15	54.8

* Calculated from the FWHM of the d_{311} peak using the Scherrer equation.

Acknowledgments

The authors thank professor Y. H. Liu of the Physics Department, Shandong University, for the

Yu Ting ZHAO et al.

measurement and significative discussion of the magnetic properties.

References

- 1. B. Gillot, M. Laarj, S. Kacim, J. Mater. Chem., 1997, 7, 827.
- 2. C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang, J. Phys. Chem. B, 2000, 104, 1141.
- 3. W. B. Cross, L. Affleck, M. V. Kuznetsov, I. P. Parkin, Q. A. Pankhurst, J. Mater. Chem., 1999, 9, 2545.
- 4. J. Q. Wang, G. Xiao, Phys. Rev. B, 1994, 49, 3982.
- 5. J. Ding, X. Y. Liu, J. Wang, Y. Shi, Mater. Lett., 2000, 44, 19.

Received 25 July, 2001